Genetic Modifiers of Chromatin Acetylation Antagonize the Reprogramming of Epi-Polymorphisms

نویسندگان

  • Anne-Laure Abraham
  • Muniyandi Nagarajan
  • Jean-Baptiste Veyrieras
  • Hélène Bottin
  • Lars M. Steinmetz
  • Gaël Yvert
چکیده

Natural populations are known to differ not only in DNA but also in their chromatin-associated epigenetic marks. When such inter-individual epigenomic differences (or "epi-polymorphisms") are observed, their stability is usually not known: they may or may not be reprogrammed over time or upon environmental changes. In addition, their origin may be purely epigenetic, or they may result from regulatory variation encoded in the DNA. Studying epi-polymorphisms requires, therefore, an assessment of their nature and stability. Here we estimate the stability of yeast epi-polymorphisms of chromatin acetylation, and we provide a genome-by-epigenome map of their genetic control. A transient epi-drug treatment was able to reprogram acetylation variation at more than one thousand nucleosomes, whereas a similar amount of variation persisted, distinguishing "labile" from "persistent" epi-polymorphisms. Hundreds of genetic loci underlied acetylation variation at 2,418 nucleosomes either locally (in cis) or distantly (in trans), and this genetic control overlapped only partially with the genetic control of gene expression. Trans-acting regulators were not necessarily associated with genes coding for chromatin modifying enzymes. Strikingly, "labile" and "persistent" epi-polymorphisms were associated with poor and strong genetic control, respectively, showing that genetic modifiers contribute to persistence. These results estimate the amount of natural epigenomic variation that can be lost after transient environmental exposures, and they reveal the complex genetic architecture of the DNA-encoded determinism of chromatin epi-polymorphisms. Our observations provide a basis for the development of population epigenetics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Single-Nucleosome Epi-Polymorphisms in Yeast

Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin. Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms, tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe here that the epigenomic sequence of ...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

P-204: Evaluation of FMR1 Gene Regulatory Region for The Epigenetic Mark of H3K9 Acetylation in Blood Cells of Patients with Diminished Ovarian Reserve Reffered to Royan Institute

Background: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes and high FSH level, the genetic cause of which is still unknown. The association between FMR1 premutations(50-200 CGG repeats) and the premature ovarian failure( POF) disease has suggested that FMR1 gene acts as a risk factor for POF and recently for DOR p...

متن کامل

Epigenetic Modifiers Are Necessary but Not Sufficient for Reprogramming Non-Myelinating Cells into Myelin Gene-Expressing Cells

BACKGROUND Modifications on specific histone residues and DNA methylation play an essential role in lineage choice and cellular reprogramming. We have previously shown that histone modifications or combinatorial codes of transcription factors (TFs) are critical for the differentiation of multipotential progenitors into myelinating oligodendrocytes. In this study we asked whether combining globa...

متن کامل

Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012